
48 Chapter 2 Finite-Dimensional Vector Spaces

For 𝑆 a finite set, let #𝑆 denote the number of elements of 𝑆. The table below
compares finite sets with finite-dimensional vector spaces, showing the analogy
between #𝑆 (for sets) and dim𝑉 (for vector spaces), as well as the analogy between
unions of subsets (in the context of sets) and sums of subspaces (in the context of
vector spaces).

sets vector spaces𝑆 is a finite set 𝑉 is a finite-dimensional vector space#𝑆 dim𝑉
for subsets 𝑆џ, 𝑆ӝ of 𝑆, the union 𝑆џ ∪ 𝑆ӝ
is the smallest subset of 𝑆 containing 𝑆џ
and 𝑆ӝ

for subspaces 𝑉џ,𝑉ӝ of 𝑉, the sum 𝑉џ+𝑉ӝ
is the smallest subspace of 𝑉 containing𝑉џ and 𝑉ӝ#(𝑆џ ∪ 𝑆ӝ) dim(𝑉џ + 𝑉ӝ)= #𝑆џ + #𝑆ӝ − #(𝑆џ ∩ 𝑆ӝ) = dim𝑉џ + dim𝑉ӝ − dim(𝑉џ ∩ 𝑉ӝ)#(𝑆џ ∪ 𝑆ӝ) = #𝑆џ + #𝑆ӝ dim(𝑉џ + 𝑉ӝ) = dim𝑉џ + dim𝑉ӝ⟺ 𝑆џ ∩ 𝑆ӝ = ∅ ⟺ 𝑉џ ∩ 𝑉ӝ = {0}𝑆џ ∪ ⋯ ∪ 𝑆֕ is a disjoint union ⟺#(𝑆џ ∪ ⋯ ∪ 𝑆֕) = #𝑆џ + ⋯ + #𝑆֕
𝑉џ + ⋯ + 𝑉 is a direct sum ⟺
dim(𝑉џ + ⋯ + 𝑉 )= dim𝑉џ + ⋯ + dim𝑉

The last row above focuses on the analogy between disjoint unions (for sets)
and direct sums (for vector spaces). The proof of the result in the last box above
will be given in 3.94.

You should be able to find results about sets that correspond, via analogy, to
the results about vector spaces in Exercises 12 through 18.

Exercises 2C

1 Show that the subspaces of 𝐑ӝ are precisely {0}, all lines in 𝐑ӝ containing
the origin, and 𝐑ӝ.

2 Show that the subspaces of 𝐑ӗ are precisely {0}, all lines in 𝐑ӗ containing
the origin, all planes in 𝐑ӗ containing the origin, and 𝐑ӗ.

3 (a) Let 𝑈 = {𝑝 ∈ 𝒫ͳ(𝐅) ∶ 𝑝(6) = 0}. Find a basis of 𝑈.
(b) Extend the basis in (a) to a basis of 𝒫ͳ(𝐅).
(c) Find a subspace 𝑊 of 𝒫ͳ(𝐅) such that 𝒫ͳ(𝐅) = 𝑈 ⊕ 𝑊.

4 (a) Let 𝑈 = {𝑝 ∈ 𝒫ͳ(𝐑) ∶ 𝑝࿌(6) = 0}. Find a basis of 𝑈.
(b) Extend the basis in (a) to a basis of 𝒫ͳ(𝐑).
(c) Find a subspace 𝑊 of 𝒫ͳ(𝐑) such that 𝒫ͳ(𝐑) = 𝑈 ⊕ 𝑊.

5 (a) Let 𝑈 = {𝑝 ∈ 𝒫ͳ(𝐅) ∶ 𝑝(2) = 𝑝(5)}. Find a basis of 𝑈.
(b) Extend the basis in (a) to a basis of 𝒫ͳ(𝐅).
(c) Find a subspace 𝑊 of 𝒫ͳ(𝐅) such that 𝒫ͳ(𝐅) = 𝑈 ⊕ 𝑊.
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