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I. REVIEW

Last time we:

(1) Given a Fuchsian group I' and a fundamental domain D for I', showed how we
can obtain a fundamental domain for any subgroup as a union of translates of D.

(2) Applied this in the particular case of I' = I'(1) = PSL,(Z) and the subgroup I'(2).

(3) Specialized some results on covering spaces and monodromy to the particular case
of the covering $) — I'\$ where I' is a Fuchsian group.

(4) In particular, used Riemann-Hurwitz to give a formula for the genus of I'(N)\$.

II. MONODROMY AND FUCHSIAN GROUPS

II.1. Monodromy via Fuchsian groups. Recall that, given a morphism F : X — Y, the
monodromy of F describes the action of the fundamental group 711 (Y') on a fiber of F. We
can reinterpret this in terms of Fuchsian groups as well.

Let F : X — Y be a morphism of Riemann surfaces and let B C Y be its set of ramifi-
cation values. Let Y* = Y\ B, and let X* = F~}(Y*) so F|x+ : X* — Y* is an unramified
covering. Applying the uniformization theorem, we obtain Fuchsian groups I'x < Ty
such that

X*=Tx\H Y =Ty\H

as well as a morphism G : T'x\$ — T'y\$ such that the following diagram commutes
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F|X*J lc

~

Y* —— Ty\9

Since $ — I'y\$ = Y™ is the universal cover of Y* and Deck($ — Y*) = Ty, then
m(Y*) =Ty.

Giveny € Y, theny corresponds to [zo|r, € I'y\$ for some zy € §). (Here [-]r, denotes the

equivalence class modulo the action of I'y.) Moreover, by commutativity of the diagram

9

x| X (1)

I'x\9 - I'y\$

given y € Y, the fiber G1(y) is
{[B(z0)Irx : B € Tx\I'v}

where B ranges over a set of right coset representatives for I'x \I'y. Thus we have a bijec-
tion
P :Tx\I'y = G !(y)

Txp = [B(z0)]ry -
We want to reinterpret the monodromy representation in terms of the groups I'y and I'y
using the above bijection. Let

p:mi(Y) = Sym(G™H(y))

be the monodromy representation of G. Given v € I'y, we describe the action of the
permutation p(7y) on I'x\T'y as follows.

Under the isomorphism I = 711 (Y™), 7y corresponds to a loop ¢ on Y*. Choose a lift ¢,
of ¢ to the universal cover §) starting at the point z, and its terminal point is y(zp). On
the other hand, we can also lift ¢ to the cover X* =2 T'x\ : let cx be the lift of ¢ to X* with
initial point [8(zo)]r,. We now determine the relationship between ¢y and Cx.

()

CH
K))
Py
x| \ 3)
I'x\9 z I'v\$
EX c

Consider the path B o ¢ on £, which has initial point 5(z) and terminal point By (zo).
(Note that B € T'x C Aut($) = PSL,(IR), so B is an automorphism of §.) Then ¢x o B o g,
is a path on X = I'x\$ with initial point [8(zo)]r, and terminal point [B7y(zo)]ry-
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Since ¢x o B o ¢y and cx are both lifts of ¢ to X starting at the point [8(zo)]r,, by com-
mutativity of the diagram (3), we have ¢x o f o Cy = Cx. In particular, then they have the
same terminal points, so the terminal point of ¢x is [B7(zo)]x-

Under the correspondence between the fiber G l(y) and the coset space I'x\I'y given
by (2), the coset I'x 8 is mapped to I'x . However(!), recall that this gives a right action
on the fiber. In order to obtain the associated left action, we must take an inverse. Thus
p(7y) maps T'xB + T'xBy ! and the diagram below commutes.

x —— p(7)x

FX\FY W FX\FY

rxﬁ P FX‘B’Y_l

Lemma 1. With notation as above, the stabilizer of a coset Txp € T'x\T'y is
Stabr, ([xp) = {y €Ty : Txp =TBv} = p 'TxB.
Proof. Given an element B~ 1yB € B 1T'xp, then

I'xBB 1B =Txvp=TxB

so B~ 1P stabilizes I'xp.
Conversely, suppose y € Ty stabilizes Txf, so TxBy ! = I'xB. Then 'y = I'xByB "},
so ByB ! € T'x. Thus

=B (BYB)B € BTIxP.

Remark 2. Taking g = 1, then in particular
I's = Stabry (rx) .

This shows how to recover I'x from the monodromy representation as the stabilizer of an

element of the fiber. For instance, suppose ¢ : X — P! is a Belyi map. By the uniformiza-
tion theorem, then there exists a triangle group A := A(a, b, ¢) and a subgroup I' < A such

that P1\ {0,1,00} = A\$) and X* = I'\§), where X* = X\ ¢~ 1({0,1,0}). Choose a base
point zg € P!\ {0,1, 00}, and label the points of the fiber ¢ ~1(z), so

q)il(zo) = {'xll X2, /xd}

where d is the degree of ¢. By the above, this is equivalent to choosing a set of representa-
tives ['B1, ..., T B, for the coset space I'\A. Recall that 7r; (IP* \ {0,1, 0} ) has presentation

{0,111, oo | 1eofitfo = 1)
where 19,11, are homotopy classes represented by small loops around 0,1, and oo,

respectively. Let p : 711 (IP1\ {0,1,00}) — S; be the monodromy representation of ¢, and
let 0y, 01, 0 be the images of 1o, 771, e under p. Since X* uniformized by A = A(a, b, ¢c),
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then 0y, 01, 0 have orders a,b,c in S;. Thus p descends to a homomorphismp : A — Sy
such that the diagram below commutes.

7'[1(]1)1 \ {0, 1,00}) _P: Sd

-
-
-
-
-
-
-7
-
-
-
-

By the lemma above, given just the permutations oy, 01, 0e, we can recover I' as
I' = Staba (1)
where A acts on {1,...,d} via the identification with the set {I'81,...,T B4}, or equiva-
lently, via the homomorphism
p:A— Sy
Oa, 0p, Oc ¥ 00,01, O -

Remark 3. If we chose a different numbering for the coset representatives, we would
obtain a conjugate (and hence isomorphic) subgroup I as the stabilizer of 1.

III. GALOIS COVERINGS AND MORPHISMS, REVISITED

III.1. Review. Recall the definition of a Galois morphism of Riemann surfaces.

Definition 4. Let F : X — Y be a morphism of Riemann surfaces with ramification values

B C Y. Then F is Galois if for each y € Y, Deck(X EN Y) acts transitively on the fiber
F7H(y).

We also gave a field theoretic characterization of Galois morphisms. Let L /K be a finite
extension of fields. Recall that the following are equivalent.

(1) L/K is Galois.
(2) L/K is normal and separable.
(3) #Aut(L/K) = [L : K].
(4) LAME/K) — K je., the fixed field of Aut(L/K) is K.
Given a morphism F : X — Y of Riemann surfaces, there is an induced extension of
function fields:

F*: M(Y) = M(X)
h— hoF.

Proposition 5. A morphism F : X — Y of Riemann surfaces is Galois iff the induced function
field extension M(X)/F*M(Y) is Galois.

II1.2. More topology. Let (X, x), (Y, y) be pointed topological spaces, and let F : (X, x) —
(Y,y) be a continuous map of pointed spaces (i.e., a continuous map F : X — Y with
F(x) =y). Given a loop 7 : [0,1] — X, then

01 X+ x £+ v
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is a loop in Y. One can show that this descends to a map

F.:m(X,x) = m(Y,y)

(7] = [Fon]

on fundamental groups. Moreover, F, is a homomorphism of groups.
Proposition 6. Let F : (X, %) — (X, x) be a covering map. Then the induced map

F.: m(X,%) = m(X,x)
is injective.
Proof. This basically follows from the uniqueness of liftings of paths and homotopies to a
covering space. Suppose 7 is a loop in X such that

[c] =1=FE([7]) = [Foq],
where c is the constant path at x. Then there exists a homotopy H from F o 7 to c. By

homomotopy lifting, this lifts to a homotopy H from 7 to ¢, where ¢ is the constant path
at x. Thus

l

Recall that 771 (X, x) acts on the fiber F~(x) by path lifting, and this action is how the
monodromy group is defined.

Proposition 7. Let F : X — X be a covering map of topological spaces and assume that X is
path-connected. The for each ¥ € F~1(x),

Stabr(l(X,x)(Y) = F*T[l(i, 5Cv) .
Proof. Given [7] € m1(X, x), let 7y be the path lift of y to X starting at x. Since [7] stabilizes
X, then 7 has endpoint X, as well. Thus 7 is a loop in X, so [7] € 711(X, X), hence
[7] = [Foq] = F([7]) € Bm(X,%).

Conversely, given [y] = F.([§]) € F.mi(X,X), then 7 is the (unique) lift of ¢ to X
starting at X. And since 7 starts and ends at ¥ (it’s a loop), then || stabilizes X.

O

II1.3. Galois groups and monodromy groups.

1%

Proposition 8. If F : X — Y is a Galois morphism of Riemann surfaces, then Deck(X/Y)
Mon(F).

Remark 9. We have previously seen that in this case, we have Gal(M(X)/ M(Y))
Deck(X/Y), so

I

Gal(M(X)/ M(Y)) = Deck(X/Y) = Mon(F).
Proposition 10. Let F : X — Y be a morphism of Riemann surfaces. Then F is Galois iff
deg(F) = #Mon(F).

Proof. The reverse implication requires some results on lifts of maps to covering spaces.

4
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Evenif F : X — Y is not Galois, we can “extend” it into a Galois morphism. We first
recall the definition of Galois closure in the case of fields.

Definition 11. Let L/K be a separable extension of fields. The Galois closure of L/K is the
smallest extension E of L, by inclusion, such that E is Galois.

Remark 12.

e Given two extensions Ejq, E; of L such that E; /K and E;/K are both Galois, then
E; N E; is also Galois. (Here this intersection is taken inside a fixed algebraic clo-
sure of K.) Thus there is a smallest such Galois extension, so the definition above
makes sense.

e In the case where L = K(«) is a simple extension, then the Galois closure of L/K is
simply the splitting field of the minimal polynomial of a.

Definition 13. The Galois closure or normal closure of a morphism F : X — Y is a Galois
morphism F : X — Y of smallest possible degree, together with a morphism G : X — X
such that the following diagram commutes.

o
N

Y

X I3

Remark 14. This is exactly the morphism corresponding to the Galois closure of the func-
tion field extension M (X)/F* M(Y).

Theorem 15. Let F : X — Y be a morphism of Riemann surfaces, and let F : X — Y be its
Galois closure. Then

Mon(F) = Deck (5( A Y> >~ Gal(M(X)/F*M(Y)).



	I. Review
	II. Monodromy and Fuchsian groups
	II.1. Monodromy via Fuchsian groups

	III. Galois coverings and morphisms, revisited
	III.1. Review
	III.2. More topology
	III.3. Galois groups and monodromy groups


