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I. REVIEW

Last time we:

(1) Given a Fuchsian group Γ and a fundamental domain D for Γ, showed how we
can obtain a fundamental domain for any subgroup as a union of translates of D.

(2) Applied this in the particular case of Γ = Γ(1) = PSL2(Z) and the subgroup Γ(2).
(3) Specialized some results on covering spaces and monodromy to the particular case

of the covering H→ Γ\H where Γ is a Fuchsian group.
(4) In particular, used Riemann-Hurwitz to give a formula for the genus of Γ(N)\H.

II. MONODROMY AND FUCHSIAN GROUPS

II.1. Monodromy via Fuchsian groups. Recall that, given a morphism F : X → Y, the
monodromy of F describes the action of the fundamental group π1(Y) on a fiber of F. We
can reinterpret this in terms of Fuchsian groups as well.

Let F : X → Y be a morphism of Riemann surfaces and let B ⊆ Y be its set of ramifi-
cation values. Let Y∗ = Y \ B, and let X∗ = F−1(Y∗) so F|X∗ : X∗ → Y∗ is an unramified
covering. Applying the uniformization theorem, we obtain Fuchsian groups ΓX ≤ ΓY
such that

X∗ ∼= ΓX\H Y∗ ∼= ΓY\H
as well as a morphism G : ΓX\H→ ΓY\H such that the following diagram commutes
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X∗ ΓX\H

Y∗ ΓY\H

F|X∗

∼

G

∼

Since H→ ΓY\H ∼= Y∗ is the universal cover of Y∗ and Deck(H→ Y∗) ∼= ΓY, then

π1(Y∗) ∼= ΓY .

Given y ∈ Y, then y corresponds to [z0]ΓY ∈ ΓY\H for some z0 ∈ H. (Here [·]ΓY denotes the
equivalence class modulo the action of ΓY.) Moreover, by commutativity of the diagram

H

ΓX\H ΓY\H

ϕX
ϕY

G

(1)

given y ∈ Y, the fiber G−1(y) is

{[β(z0)]ΓX : β ∈ ΓX\ΓY}

where β ranges over a set of right coset representatives for ΓX\ΓY. Thus we have a bijec-
tion

Φ : ΓX\ΓY → G−1(y)
ΓXβ 7→ [β(z0)]ΓX .

(2)

We want to reinterpret the monodromy representation in terms of the groups ΓX and ΓY
using the above bijection. Let

ρ : π1(Y)→ Sym(G−1(y))

be the monodromy representation of G. Given γ ∈ ΓY, we describe the action of the
permutation ρ(γ) on ΓX\ΓY as follows.

Under the isomorphism Γ ∼= π1(Y∗), γ corresponds to a loop c on Y∗. Choose a lift c̃H
of c to the universal cover H starting at the point z0, and its terminal point is γ(z0). On
the other hand, we can also lift c to the cover X∗ ∼= ΓX\H: let c̃X be the lift of c to X∗ with
initial point [β(z0)]ΓX . We now determine the relationship between c̃H and c̃X.

c̃H

H

ΓX\H ΓY\H

c̃X c

ϕX
ϕY

G

(3)

Consider the path β ◦ c̃H on H, which has initial point β(z0) and terminal point βγ(z0).
(Note that β ∈ ΓX ⊆ Aut(H) ∼= PSL2(R), so β is an automorphism of H.) Then ϕX ◦ β ◦ c̃H
is a path on X ∼= ΓX\H with initial point [β(z0)]ΓX and terminal point [βγ(z0)]ΓX .
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Since ϕX ◦ β ◦ c̃H and c̃X are both lifts of c to X starting at the point [β(z0)]ΓX , by com-
mutativity of the diagram (3), we have ϕX ◦ β ◦ c̃H = c̃X. In particular, then they have the
same terminal points, so the terminal point of c̃X is [βγ(z0)]X.

Under the correspondence between the fiber G−1(y) and the coset space ΓX\ΓY given
by (2), the coset ΓXβ is mapped to ΓXβγ. However(!), recall that this gives a right action
on the fiber. In order to obtain the associated left action, we must take an inverse. Thus
ρ(γ) maps ΓXβ 7→ ΓXβγ−1 and the diagram below commutes.

x ρ(γ) x

G−1(y) G−1(y)

ΓX\ΓY ΓX\ΓY

ΓXβ ΓXβγ−1

ρ(γ)

Φ

ρ(γ)

Φ

Lemma 1. With notation as above, the stabilizer of a coset ΓXβ ∈ ΓX\ΓY is

StabΓY(ΓXβ) = {γ ∈ ΓY : ΓXβ = Γβγ} = β−1ΓXβ .

Proof. Given an element β−1γβ ∈ β−1ΓXβ, then

ΓXβ β−1γβ = ΓXγβ = ΓXβ

so β−1γβ stabilizes ΓXβ.
Conversely, suppose γ ∈ ΓY stabilizes ΓXβ, so ΓXβγ−1 = ΓXβ. Then ΓX = ΓXβγβ−1,

so βγβ−1 ∈ ΓX. Thus

γ = β−1(βγβ−1)β ∈ β−1ΓXβ .

�

Remark 2. Taking β = 1, then in particular

ΓX = StabΓY(ΓX) .

This shows how to recover ΓX from the monodromy representation as the stabilizer of an
element of the fiber. For instance, suppose ϕ : X → P1 is a Belyi map. By the uniformiza-
tion theorem, then there exists a triangle group ∆ := ∆(a, b, c) and a subgroup Γ ≤ ∆ such
that P1 \ {0, 1, ∞} ∼= ∆\H and X∗ ∼= Γ\H, where X∗ = X \ ϕ−1({0, 1, ∞}). Choose a base
point z0 ∈ P1 \ {0, 1, ∞}, and label the points of the fiber ϕ−1(z0), so

ϕ−1(z0) = {x1, x2, . . . , xd}
where d is the degree of ϕ. By the above, this is equivalent to choosing a set of representa-
tives Γβ1, . . . , Γβd for the coset space Γ\∆. Recall that π1(P

1 \ {0, 1, ∞}) has presentation

〈η0, η1, η∞ | η∞η1η0 = 1〉
where η0, η1, η∞ are homotopy classes represented by small loops around 0, 1, and ∞,
respectively. Let ρ : π1(P

1 \ {0, 1, ∞}) → Sd be the monodromy representation of ϕ, and
let σ0, σ1, σ∞ be the images of η0, η1, η∞ under ρ. Since X∗ uniformized by ∆ = ∆(a, b, c),
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then σ0, σ1, σ∞ have orders a, b, c in Sd. Thus ρ descends to a homomorphism ρ : ∆ → Sd
such that the diagram below commutes.

π1(P
1 \ {0, 1, ∞}) Sd

∆

ρ

ρ

By the lemma above, given just the permutations σ0, σ1, σ∞, we can recover Γ as

Γ = Stab∆(1)

where ∆ acts on {1, . . . , d} via the identification with the set {Γβ1, . . . , Γβd}, or equiva-
lently, via the homomorphism

ρ : ∆→ Sd

δa, δb, δc 7→ σ0, σ1, σ∞ .

Remark 3. If we chose a different numbering for the coset representatives, we would
obtain a conjugate (and hence isomorphic) subgroup Γ as the stabilizer of 1.

III. GALOIS COVERINGS AND MORPHISMS, REVISITED

III.1. Review. Recall the definition of a Galois morphism of Riemann surfaces.

Definition 4. Let F : X → Y be a morphism of Riemann surfaces with ramification values

B ⊆ Y. Then F is Galois if for each y ∈ Y, Deck(X F→ Y) acts transitively on the fiber
F−1(y).

We also gave a field theoretic characterization of Galois morphisms. Let L/K be a finite
extension of fields. Recall that the following are equivalent.

(1) L/K is Galois.
(2) L/K is normal and separable.
(3) # Aut(L/K) = [L : K].
(4) LAut(L/K) = K, i.e., the fixed field of Aut(L/K) is K.

Given a morphism F : X → Y of Riemann surfaces, there is an induced extension of
function fields:

F∗ :M(Y) ↪→M(X)

h 7→ h ◦ F .

Proposition 5. A morphism F : X → Y of Riemann surfaces is Galois iff the induced function
field extensionM(X)/F∗M(Y) is Galois.

III.2. More topology. Let (X, x), (Y, y) be pointed topological spaces, and let F : (X, x)→
(Y, y) be a continuous map of pointed spaces (i.e., a continuous map F : X → Y with
F(x) = y). Given a loop γ : [0, 1]→ X, then

[0, 1] X Y
γ F
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is a loop in Y. One can show that this descends to a map

F∗ : π1(X, x)→ π1(Y, y)
[γ] 7→ [F ◦ γ]

on fundamental groups. Moreover, F∗ is a homomorphism of groups.

Proposition 6. Let F : (X̃, x̃)→ (X, x) be a covering map. Then the induced map

F∗ : π1(X̃, x̃)→ π1(X, x)

is injective.

Proof. This basically follows from the uniqueness of liftings of paths and homotopies to a
covering space. Suppose γ̃ is a loop in X̃ such that

[c] = 1 = F∗([γ̃]) = [F ◦ γ̃] ,

where c is the constant path at x. Then there exists a homotopy H from F ◦ γ̃ to c. By
homomotopy lifting, this lifts to a homotopy H̃ from γ̃ to c̃, where c̃ is the constant path
at x̃. Thus

[γ̃] = [c̃] = 1 .
�

Recall that π1(X, x) acts on the fiber F−1(x) by path lifting, and this action is how the
monodromy group is defined.

Proposition 7. Let F : X̃ → X be a covering map of topological spaces and assume that X̃ is
path-connected. The for each x̃ ∈ F−1(x),

Stabπ1(X,x)(x̃) = F∗π1(X̃, x̃) .

Proof. Given [γ] ∈ π1(X, x), let γ̃ be the path lift of γ to X̃ starting at x̃. Since [γ] stabilizes
x̃, then γ̃ has endpoint x̃, as well. Thus γ̃ is a loop in X̃, so [γ̃] ∈ π1(X̃, x̃), hence

[γ] = [F ◦ γ̃] = F∗([γ̃]) ∈ F∗π1(X̃, x̃) .

Conversely, given [γ] = F∗([γ̃]) ∈ F∗π1(X̃, x̃), then γ̃ is the (unique) lift of γ to X̃
starting at x̃. And since γ̃ starts and ends at x̃ (it’s a loop), then [γ] stabilizes x̃. �

III.3. Galois groups and monodromy groups.

Proposition 8. If F : X → Y is a Galois morphism of Riemann surfaces, then Deck(X/Y) ∼=
Mon(F).

Remark 9. We have previously seen that in this case, we have Gal(M(X)/M(Y)) ∼=
Deck(X/Y), so

Gal(M(X)/M(Y)) ∼= Deck(X/Y) ∼= Mon(F) .

Proposition 10. Let F : X → Y be a morphism of Riemann surfaces. Then F is Galois iff
deg(F) = # Mon(F).

Proof. The reverse implication requires some results on lifts of maps to covering spaces.
�
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¡++¿
Even if F : X → Y is not Galois, we can “extend” it into a Galois morphism. We first

recall the definition of Galois closure in the case of fields.

Definition 11. Let L/K be a separable extension of fields. The Galois closure of L/K is the
smallest extension E of L, by inclusion, such that E is Galois.

Remark 12.
• Given two extensions E1, E2 of L such that E1/K and E2/K are both Galois, then

E1 ∩ E2 is also Galois. (Here this intersection is taken inside a fixed algebraic clo-
sure of K.) Thus there is a smallest such Galois extension, so the definition above
makes sense.
• In the case where L = K(α) is a simple extension, then the Galois closure of L/K is

simply the splitting field of the minimal polynomial of α.

Definition 13. The Galois closure or normal closure of a morphism F : X → Y is a Galois
morphism F̃ : X̃ → Y of smallest possible degree, together with a morphism G : X̃ → X
such that the following diagram commutes.

X̃

X

Y

F̃

G

F

Remark 14. This is exactly the morphism corresponding to the Galois closure of the func-
tion field extensionM(X)/F∗M(Y).

Theorem 15. Let F : X → Y be a morphism of Riemann surfaces, and let F̃ : X̃ → Y be its
Galois closure. Then

Mon(F) ∼= Deck
(

X̃ F̃→ Y
)
∼= Gal(M(X̃)/F̃∗M(Y)) .
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