BELYI MAPS AND DESSINS D'ENFANTS LECTURE 15

SAM SCHIAVONE

CONTENTS

I. Review	1
II. Monodromy and Fuchsian groups	1
II.1. Monodromy via Fuchsian groups	1
III. Galois coverings and morphisms, revisited	4
III.1. Review	4
III.2. More topology	4
III.3. Galois groups and monodromy groups	5

I. REVIEW

Last time we:

- (1) Given a Fuchsian group Γ and a fundamental domain D for Γ , showed how we can obtain a fundamental domain for any subgroup as a union of translates of D.
- (2) Applied this in the particular case of $\Gamma = \Gamma(1) = PSL_2(\mathbb{Z})$ and the subgroup $\Gamma(2)$.
- (3) Specialized some results on covering spaces and monodromy to the particular case of the covering $\mathfrak{H} \to \Gamma \backslash \mathfrak{H}$ where Γ is a Fuchsian group.
- (4) In particular, used Riemann-Hurwitz to give a formula for the genus of $\Gamma(N) \setminus \mathfrak{H}$.

II. MONODROMY AND FUCHSIAN GROUPS

II.1. **Monodromy via Fuchsian groups.** Recall that, given a morphism $F: X \to Y$, the monodromy of F describes the action of the fundamental group $\pi_1(Y)$ on a fiber of F. We can reinterpret this in terms of Fuchsian groups as well.

Let $F: X \to Y$ be a morphism of Riemann surfaces and let $B \subseteq Y$ be its set of ramification values. Let $Y^* = Y \setminus B$, and let $X^* = F^{-1}(Y^*)$ so $F|_{X^*}: X^* \to Y^*$ is an unramified covering. Applying the uniformization theorem, we obtain Fuchsian groups $\Gamma_X \leq \Gamma_Y$ such that

$$X^* \cong \Gamma_X \backslash \mathfrak{H} \qquad Y^* \cong \Gamma_Y \backslash \mathfrak{H}$$

as well as a morphism $G: \Gamma_X \setminus \mathfrak{H} \to \Gamma_Y \setminus \mathfrak{H}$ such that the following diagram commutes

Date: May 17, 2021.

$$X^* \xrightarrow{\sim} \Gamma_X \backslash \mathfrak{H}$$

$$F|_{X^*} \downarrow \qquad \qquad \downarrow_G$$

$$Y^* \xrightarrow{\sim} \Gamma_Y \backslash \mathfrak{H}$$

Since $\mathfrak{H} \to \Gamma_Y \backslash \mathfrak{H} \cong Y^*$ is the universal cover of Y^* and $\operatorname{Deck}(\mathfrak{H} \to Y^*) \cong \Gamma_Y$, then

$$\pi_1(Y^*) \cong \Gamma_Y$$
.

Given $y \in Y$, then y corresponds to $[z_0]_{\Gamma_Y} \in \Gamma_Y \setminus \mathfrak{H}$ for some $z_0 \in \mathfrak{H}$. (Here $[\cdot]_{\Gamma_Y}$ denotes the equivalence class modulo the action of Γ_Y .) Moreover, by commutativity of the diagram

$$\begin{array}{c|c}
\mathfrak{H} & \varphi_{Y} \\
\varphi_{X} \downarrow & \varphi_{Y} \\
\Gamma_{X} \backslash \mathfrak{H} & \longrightarrow & \Gamma_{Y} \backslash \mathfrak{H}
\end{array} \tag{1}$$

given $y \in Y$, the fiber $G^{-1}(y)$ is

$$\{[\beta(z_0)]_{\Gamma_X}: \beta \in \Gamma_X \backslash \Gamma_Y\}$$

where β ranges over a set of right coset representatives for $\Gamma_X \backslash \Gamma_Y$. Thus we have a bijection

$$\Phi: \Gamma_X \backslash \Gamma_Y \to G^{-1}(y) \Gamma_X \beta \mapsto [\beta(z_0)]_{\Gamma_X}.$$
(2)

We want to reinterpret the monodromy representation in terms of the groups Γ_X and Γ_Y using the above bijection. Let

$$\rho: \pi_1(Y) \to \operatorname{Sym}(G^{-1}(y))$$

be the monodromy representation of G. Given $\gamma \in \Gamma_Y$, we describe the action of the permutation $\rho(\gamma)$ on $\Gamma_X \setminus \Gamma_Y$ as follows.

Under the isomorphism $\Gamma \cong \pi_1(Y^*)$, γ corresponds to a loop c on Y^* . Choose a lift $\widetilde{c}_{\mathfrak{H}}$ of c to the universal cover \mathfrak{H} starting at the point z_0 , and its terminal point is $\gamma(z_0)$. On the other hand, we can also lift c to the cover $X^* \cong \Gamma_X \backslash \mathfrak{H}$: let \widetilde{c}_X be the lift of c to X^* with initial point $[\beta(z_0)]_{\Gamma_X}$. We now determine the relationship between $\widetilde{c}_{\mathfrak{H}}$ and \widetilde{c}_X .

$$\begin{array}{ccc}
\widetilde{c}_{\mathfrak{H}} & & & & \\
& & & & \\
\varphi_{X} & & & & \\
& & & & \\
\Gamma_{X} \backslash \mathfrak{H} & \xrightarrow{G} & \Gamma_{Y} \backslash \mathfrak{H} & & \\
\widetilde{c}_{X} & & & & c
\end{array} \tag{3}$$

Consider the path $\beta \circ \widetilde{c}_{\mathfrak{H}}$ on \mathfrak{H} , which has initial point $\beta(z_0)$ and terminal point $\beta\gamma(z_0)$. (Note that $\beta \in \Gamma_X \subseteq \operatorname{Aut}(\mathfrak{H}) \cong \operatorname{PSL}_2(\mathbb{R})$, so β is an automorphism of \mathfrak{H} .) Then $\varphi_X \circ \beta \circ \widetilde{c}_{\mathfrak{H}}$ is a path on $X \cong \Gamma_X \setminus \mathfrak{H}$ with initial point $[\beta(z_0)]_{\Gamma_X}$ and terminal point $[\beta\gamma(z_0)]_{\Gamma_X}$.

Since $\varphi_X \circ \beta \circ \widetilde{c}_{\mathfrak{H}}$ and \widetilde{c}_X are both lifts of c to X starting at the point $[\beta(z_0)]_{\Gamma_X}$, by commutativity of the diagram (3), we have $\varphi_X \circ \beta \circ \widetilde{c}_{\mathfrak{H}} = \widetilde{c}_X$. In particular, then they have the same terminal points, so the terminal point of \widetilde{c}_X is $[\beta \gamma(z_0)]_X$.

Under the correspondence between the fiber $G^{-1}(y)$ and the coset space $\Gamma_X \setminus \Gamma_Y$ given by (2), the coset $\Gamma_X \beta$ is mapped to $\Gamma_X \beta \gamma$. However(!), recall that this gives a right action on the fiber. In order to obtain the associated left action, we must take an inverse. Thus $\rho(\gamma)$ maps $\Gamma_X \beta \mapsto \Gamma_X \beta \gamma^{-1}$ and the diagram below commutes.

$$x \longmapsto \rho(\gamma) x$$

$$G^{-1}(y) \xrightarrow{\rho(\gamma)} G^{-1}(y)$$

$$\Phi \uparrow \qquad \qquad \Phi \uparrow$$

$$\Gamma_X \backslash \Gamma_Y \xrightarrow{\rho(\gamma)} \Gamma_X \backslash \Gamma_Y$$

$$\Gamma_X \beta \longmapsto \Gamma_X \beta \gamma^{-1}$$

Lemma 1. With notation as above, the stabilizer of a coset $\Gamma_X \beta \in \Gamma_X \backslash \Gamma_Y$ is

$$\mathsf{Stab}_{\Gamma_Y}(\Gamma_X\beta) = \{ \gamma \in \Gamma_Y : \Gamma_X\beta = \Gamma\beta\gamma \} = \beta^{-1}\Gamma_X\beta.$$

Proof. Given an element $\beta^{-1}\gamma\beta\in\beta^{-1}\Gamma_X\beta$, then

$$\Gamma_X \beta \beta^{-1} \gamma \beta = \Gamma_X \gamma \beta = \Gamma_X \beta$$

so $\beta^{-1}\gamma\beta$ stabilizes $\Gamma_X\beta$.

Conversely, suppose $\gamma \in \Gamma_X$ stabilizes $\Gamma_X \beta$, so $\Gamma_X \beta \gamma^{-1} = \Gamma_X \beta$. Then $\Gamma_X = \Gamma_X \beta \gamma \beta^{-1}$, so $\beta \gamma \beta^{-1} \in \Gamma_X$. Thus

$$\gamma = \beta^{-1}(\beta \gamma \beta^{-1})\beta \in \beta^{-1}\Gamma_X \beta$$
.

Remark 2. Taking $\beta = 1$, then in particular

$$\Gamma_X = \operatorname{Stab}_{\Gamma_Y}(\Gamma_X)$$
.

This shows how to recover Γ_X from the monodromy representation as the stabilizer of an element of the fiber. For instance, suppose $\varphi: X \to \mathbb{P}^1$ is a Belyi map. By the uniformization theorem, then there exists a triangle group $\Delta := \Delta(a,b,c)$ and a subgroup $\Gamma \le \Delta$ such that $\mathbb{P}^1 \setminus \{0,1,\infty\} \cong \Delta \setminus \mathfrak{H}$ and $X^* \cong \Gamma \setminus \mathfrak{H}$, where $X^* = X \setminus \varphi^{-1}(\{0,1,\infty\})$. Choose a base point $z_0 \in \mathbb{P}^1 \setminus \{0,1,\infty\}$, and label the points of the fiber $\varphi^{-1}(z_0)$, so

$$\varphi^{-1}(z_0) = \{x_1, x_2, \dots, x_d\}$$

where d is the degree of φ . By the above, this is equivalent to choosing a set of representatives $\Gamma\beta_1, \ldots, \Gamma\beta_d$ for the coset space $\Gamma\setminus\Delta$. Recall that $\pi_1(\mathbb{P}^1\setminus\{0,1,\infty\})$ has presentation

$$\langle \eta_0, \eta_1, \eta_\infty \mid \eta_\infty \eta_1 \eta_0 = 1 \rangle$$

where $\eta_0, \eta_1, \eta_\infty$ are homotopy classes represented by small loops around 0,1, and ∞ , respectively. Let $\rho : \pi_1(\mathbb{P}^1 \setminus \{0,1,\infty\}) \to S_d$ be the monodromy representation of φ , and let $\sigma_0, \sigma_1, \sigma_\infty$ be the images of $\eta_0, \eta_1, \eta_\infty$ under ρ . Since X^* uniformized by $\Delta = \Delta(a, b, c)$,

then $\sigma_0, \sigma_1, \sigma_\infty$ have orders a, b, c in S_d . Thus ρ descends to a homomorphism $\overline{\rho}: \Delta \to S_d$ such that the diagram below commutes.

$$\pi_1(\mathbb{P}^1 \setminus \{0,1,\infty\}) \xrightarrow{\rho \atop \overline{\rho}} S_d$$

By the lemma above, given just the permutations σ_0 , σ_1 , σ_∞ , we can recover Γ as

$$\Gamma = \operatorname{Stab}_{\Lambda}(1)$$

where Δ acts on $\{1,\ldots,d\}$ via the identification with the set $\{\Gamma\beta_1,\ldots,\Gamma\beta_d\}$, or equivalently, via the homomorphism

$$\overline{\rho}: \Delta \to S_d$$

 $\delta_a, \delta_b, \delta_c \mapsto \sigma_0, \sigma_1, \sigma_\infty$.

Remark 3. If we chose a different numbering for the coset representatives, we would obtain a conjugate (and hence isomorphic) subgroup Γ as the stabilizer of 1.

III. GALOIS COVERINGS AND MORPHISMS, REVISITED

III.1. **Review.** Recall the definition of a Galois morphism of Riemann surfaces.

Definition 4. Let $F: X \to Y$ be a morphism of Riemann surfaces with ramification values $B\subseteq Y$. Then F is Galois if for each $y\in Y$, $\mathrm{Deck}(X\overset{F}{\to}Y)$ acts transitively on the fiber $F^{-1}(y)$.

We also gave a field theoretic characterization of Galois morphisms. Let L/K be a finite extension of fields. Recall that the following are equivalent.

- (1) L/K is Galois.
- (2) L/K is normal and separable.
- (3) $\# \operatorname{Aut}(L/K) = [L:K].$
- (4) $L^{\text{Aut}(L/K)} = K$, i.e., the fixed field of Aut(L/K) is K.

Given a morphism $F: X \to Y$ of Riemann surfaces, there is an induced extension of function fields:

$$F^*: \mathcal{M}(Y) \hookrightarrow \mathcal{M}(X)$$

 $h \mapsto h \circ F$.

Proposition 5. A morphism $F: X \to Y$ of Riemann surfaces is Galois iff the induced function *field extension* $\mathcal{M}(X)/F^*\mathcal{M}(Y)$ *is Galois.*

III.2. **More topology.** Let (X, x), (Y, y) be pointed topological spaces, and let $F : (X, x) \to X$ (Y,y) be a continuous map of pointed spaces (i.e., a continuous map $F:X\to Y$ with F(x) = y). Given a loop $\gamma : [0,1] \to X$, then

$$[0,1] \xrightarrow{\gamma} X \xrightarrow{F} Y$$

is a loop in Y. One can show that this descends to a map

$$F_*: \pi_1(X, x) \to \pi_1(Y, y)$$

 $[\gamma] \mapsto [F \circ \gamma]$

on fundamental groups. Moreover, F_* is a homomorphism of groups.

Proposition 6. Let $F:(\widetilde{X},\widetilde{x})\to (X,x)$ be a covering map. Then the induced map

$$F_*: \pi_1(\widetilde{X}, \widetilde{x}) \to \pi_1(X, x)$$

is injective.

Proof. This basically follows from the uniqueness of liftings of paths and homotopies to a covering space. Suppose $\tilde{\gamma}$ is a loop in \tilde{X} such that

$$[c] = 1 = F_*([\widetilde{\gamma}]) = [F \circ \widetilde{\gamma}],$$

where c is the constant path at x. Then there exists a homotopy H from $F \circ \widetilde{\gamma}$ to c. By homomotopy lifting, this lifts to a homotopy \widetilde{H} from $\widetilde{\gamma}$ to \widetilde{c} , where \widetilde{c} is the constant path at \widetilde{x} . Thus

$$[\widetilde{\gamma}] = [\widetilde{c}] = 1$$
.

Recall that $\pi_1(X, x)$ acts on the fiber $F^{-1}(x)$ by path lifting, and this action is how the monodromy group is defined.

Proposition 7. Let $F: \widetilde{X} \to X$ be a covering map of topological spaces and assume that \widetilde{X} is path-connected. The for each $\widetilde{x} \in F^{-1}(x)$,

$$\operatorname{Stab}_{\pi_1(X,x)}(\widetilde{x}) = F_*\pi_1(\widetilde{X},\widetilde{x}).$$

Proof. Given $[\gamma] \in \pi_1(X, x)$, let $\widetilde{\gamma}$ be the path lift of γ to \widetilde{X} starting at \widetilde{x} . Since $[\gamma]$ stabilizes \widetilde{x} , then $\widetilde{\gamma}$ has endpoint \widetilde{x} , as well. Thus $\widetilde{\gamma}$ is a loop in \widetilde{X} , so $[\widetilde{\gamma}] \in \pi_1(\widetilde{X}, \widetilde{x})$, hence

$$[\gamma] = [F \circ \widetilde{\gamma}] = F_*([\widetilde{\gamma}]) \in F_*\pi_1(\widetilde{X}, \widetilde{x}).$$

Conversely, given $[\gamma] = F_*([\widetilde{\gamma}]) \in F_*\pi_1(\widetilde{X},\widetilde{x})$, then $\widetilde{\gamma}$ is the (unique) lift of γ to \widetilde{X} starting at \widetilde{x} . And since $\widetilde{\gamma}$ starts and ends at \widetilde{x} (it's a loop), then $[\gamma]$ stabilizes \widetilde{x} .

III.3. Galois groups and monodromy groups.

Proposition 8. *If* $F: X \to Y$ *is a Galois morphism of Riemann surfaces, then* $Deck(X/Y) \cong Mon(F)$.

Remark 9. We have previously seen that in this case, we have $Gal(\mathcal{M}(X)/\mathcal{M}(Y)) \cong Deck(X/Y)$, so

$$Gal(\mathcal{M}(X)/\mathcal{M}(Y)) \cong Deck(X/Y) \cong Mon(F)$$
.

Proposition 10. Let $F: X \to Y$ be a morphism of Riemann surfaces. Then F is Galois iff deg(F) = #Mon(F).

Proof. The reverse implication requires some results on lifts of maps to covering spaces. \Box

j++;

Even if $F: X \to Y$ is not Galois, we can "extend" it into a Galois morphism. We first recall the definition of Galois closure in the case of fields.

Definition 11. Let L/K be a separable extension of fields. The Galois closure of L/K is the smallest extension E of L, by inclusion, such that E is Galois.

Remark 12.

- Given two extensions E_1 , E_2 of L such that E_1/K and E_2/K are both Galois, then $E_1 \cap E_2$ is also Galois. (Here this intersection is taken inside a fixed algebraic closure of K.) Thus there is a smallest such Galois extension, so the definition above makes sense.
- In the case where $L = K(\alpha)$ is a simple extension, then the Galois closure of L/K is simply the splitting field of the minimal polynomial of α .

Definition 13. The Galois closure or normal closure of a morphism $F: X \to Y$ is a Galois morphism $\widetilde{F}: \widetilde{X} \to Y$ of smallest possible degree, together with a morphism $G: \widetilde{X} \to X$ such that the following diagram commutes.

Remark 14. This is exactly the morphism corresponding to the Galois closure of the function field extension $\mathcal{M}(X)/F^*\mathcal{M}(Y)$.

Theorem 15. Let $F: X \to Y$ be a morphism of Riemann surfaces, and let $\widetilde{F}: \widetilde{X} \to Y$ be its Galois closure. Then

$$\operatorname{Mon}(F) \cong \operatorname{Deck}\left(\widetilde{X} \xrightarrow{\widetilde{F}} Y\right) \cong \operatorname{Gal}(\mathcal{M}(\widetilde{X})/\widetilde{F}^*\mathcal{M}(Y)).$$