Samuel S. Schiavone

(802) 338-7867 | sam.schiavone@gmail.com | samschiavone.github.io | github.com/SamSchiavone | linkedin.com/in/samschiavone/

PROFILE

I am a Ph.D. mathematician, researcher, and programmer, who combines mathematical abstraction with computational tools in order to discover, analyze, and elucidate. I specialize in translating theoretical concepts into practical solutions.

EDUCATION

Dartmouth CollegeHanover, New HampshirePh.D. in MathematicsSep 2019The University of VermontBurlington, VermontM.S. in MathematicsDec 2013Amherst CollegeAmherst, MassachusettsB.A. in Mathematics, magna cum laude, Phi Beta KappaMay 2010

EXPERIENCE

Research Scientist

Sep 2019 - Aug 2025

Cambridge, Massachusetts

Massachusetts Institute of Technology

- · Conducted research in computational arithmetic geometry.
- Devised and implemented algorithms to compute mathematical objects, wrote mathematical proofs, and chronicled my research in academic articles.
- Aided in the development and maintenance of the L-functions and Modular Forms Database (https://www.lmfdb.org/), working both with data in PostgreSQL and Python on the backend and in Flask, Jinja, and HTML on the frontend.
- Instructed 65 undergraduate students in courses in linear algebra, algebraic geometry, mathematical communication, and Belyi maps.

Graduate Student Instructor

Sep 2016 - Sep 2019

Dartmouth College

Hanover, New Hampshire

- Instructed 90 undergraduate students in courses in calculus, linear algebra, and differential equations.
- Prepared and gave lectures 3 to 4 times per week.
- · Evaluated students' performance on homework assignments, quizzes, and exams.

Graduate Teaching Assistant

Sep 2014 - Aug 2016

Dartmouth College

Hanover, New Hampshire

- · Led evening tutorial sessions 3 times per week, responding to students' questions about homework.
- · Graded students' exams.

Research Assistant

Jan 2014 - Sep 2014

Dartmouth College

Hanover, New Hampshire

• Worked with Professor John Voight to improve and extend results from our publication, *Numerical calculation of three-point* branched covers of the projective line.

Graduate Teaching Fellow

Jan 2012 - Dec 2013

The University of Vermont

Burlington, Vermont

- Instructed 130 undergraduate students in courses in calculus and discrete math.
- · Planned and gave lectures 3 times per week.
- Evaluated students' performance on homework assignments, quizzes, and exams.

Mathematics Instructor

July 2013

The Joshua M. Stimson Mathematics Program

North Haverhill, New Hampshire

- · Instructed 5 middle school students in a mathematics enrichment program at Haverhill Cooperative Middle School.
- Designed a curriculum focusing on combinatorics, probability, and number theory.
- · Planned daily lessons and activities with an emphasis on discovery and inquiry.

English Teaching Assistant

French Ministry of National Education

Oct 2010 - Apr 2011 Vendôme, France

- Instructed 150 French middle school students in English in two schools, as a part of the Teaching Assistant Program in France.
- Planned lessons focusing on oral expression and comprehension, grammar, and vocabulary.

Undergraduate Researcher

June 2009 - July 2009 Claremont, California

The Claremont Colleges

- Studied formal groups over the p-adic numbers at the NSF-sponsored research program for undergraduates, working in a small group under Professor Ghassan Sarkis.
- · Chronicled results in an individual final paper.
- Presented results at WIMIN conference (Smith College, Northampton, Massachusetts) and at undergraduate poster competition at 2010 Joint Math Meetings (San Francisco, California).

PUBLICATIONS

- 1. Bouchet, T., Hanselman, J., Pieper, A., & **Schiavone, S.** (2025). "Mumford-type Shimura curves contained in the Torelli locus." *Preprint*. arXiv:2510.00093.
- 2. van Bommel, R., Costa, E., Elkies, N. D., Keller, T., **Schiavone, S.**, & Voight, J. (2024). "17T7 is a Galois group over the rationals." *Preprint*. arXiv:2411.07857.
- 3. Combes, L., Jones, J. W., Paulhus, J., Roe, D., Roy, M., & **Schiavone**, **S.** (2024). "Creating a dynamic database of finite groups." *Preprint*. arXiv:2409.09189.
- 4. Hanselman, J., Pieper, A., & **Schiavone, S.** (2024). "Equations of genus 4 curves from their theta constants." *Preprint*. arXiv:2402.03160.
- Assaf, E., Babei, A., Breen, B., Costa, E., Duque-Rosero, J., Horawa, A., Kieffer, J., Kulkarni, A., Molnar, G., Schiavone, S., & Voight, J. (2024). A database of basic numerical invariants of Hilbert modular surfaces. In LuCaNT: LMFDB, computation, and number theory. Conference, Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island, USA, July 10–14, 2023 (pp. 285–312). American Mathematical Society (AMS). arXiv:2301.10302.
- 6. Hanselman, J., **Schiavone, S.**, & Sijsling, J. (2021). Gluing curves of genus 1 and 2 along their 2-torsion. *Mathematics of Computation*, 90(331), 2333–2379. arXiv:2005.03587.
- 7. Musty, M., **Schiavone, S.**, Sijsling, J., & Voight, J. (2019). A database of Belyi maps. In ANTS XIII. Proceedings of the thirteenth algorithmic number theory symposium, University of Wisconsin-Madison, WI, USA, July 16–20, 2018 (pp. 375–392). Mathematical Sciences Publishers (MSP). arXiv:1805.07751.
- 8. Schiavone, S. (2019). On Algebras of Low Rank and on Belyi Maps, PhD dissertation, Dartmouth College.
- 9. Klug, M., Musty, M., **Schiavone, S.**, & Voight, J. (2014). Numerical calculation of three-point branched covers of the projective line. *LMS Journal of Computation and Mathematics*, *17*, 379–430. arXiv:1311.2081.

SELECTED DEVELOPMENT

Development for the L-functions and modular forms database (LMFDB)

May 2018 - Present

Full Stack Web Development

Remote

- Collaborated on a joint open-source project to create an accessible repository of data in algebra and number theory, used by over 30,000 researchers and educators in math
- Co-created two sections of an online database: added data to the backend using Python and PostgreSQL; designed webpages to display the data using Flask, Jinja, and HTML
- Supervised four undergraduate students in the creation of a Magma and SageMath package to compute additional data
- Connected to other sections of the LMFDB by identifying and linking to related objects using scripts written in Python and SageMath

Computations of Mumford-type Abelian Varieties

Feb 2024 - Present

Academic Research

Cambridge, Massachusetts

• Contributed key computational analysis to a 4-person team to produce the first explicit examples of abelian fourfolds of Mumford type, resolving a decades-old open problem in arithmetic geometry.

- Engineered and executed a large-scale parallel computation in Magma and SageMath using number field data from the LMFDB.
- Combined practical programming skills with theoretical expertise to analyze data and observe evidence of abelian fourfolds of Mumford type in the resulting data.
- Produced a code repository (SamSchiavone/Mumford-type) containing scripts to reproduce and analyze these abelian fourfolds.
- Chronicled results in a research article (arXiv:2510.00093).
- Presented results at two invited talks in number theory seminars at Harvard University and the University of Wisconsin-Madison.

Computations in Inverse Galois Theory

Jan 2022 - Nov 2024

Academic Research

• Collaborated on a team of 6 researchers to solve an open mathematical problem in computational number theory.

- Combined theoretical expertise with practical programming skills in Python, PostgreSQL, SageMath, and Magma to produce a research article and two repositories of code, one a general Magma package (edgarcosta/EichlerShimuraHMF) and the other tailored to a specific example (SamSchiavone/17T7).
- Chronicled results in a research article (arxiv:2411.07857).
- Presented results in two invited talks to audiences of 30-50 researchers at VaNTAGe and Simons AGNTC annual meeting.
- Synthesized detailed understanding of theoretical results in arithmetic geometry with technical programming expertise to give an explicit solution to an open mathematical problem.

SKILLS

Programming Languages: Python, PostgreSQL, SageMath, Magma, R

Programming Tools: Git, Pandas, Numpy, Scikit-learn, Flask, Jinja, GNU Parallel

Languages: English (native), French (fluent), Spanish (intermediate)