
18.700 HW 6 Solutions Fall 2024

1. (5 points) Suppose V is finite-dimensional and T ∈ L(V). Prove that the
minimal polynomial of T has degree at most 1+ dim(im(T)).

Proof.

Let p(x) be the minimal polynomial for T restricted to im(T) ⊂ V . Then it
follows that

deg(p) ≤ dim(imV).

We claim that the minimal polynomial of T divides the polynomial q(x) =
xp(x). Then it will follow that for the minimal polynomial m(x) of T ,

deg(m) ≤ deg(q) = 1+ deg(p) ≤ 1+ dim(imV)),

so we are done. By the rank-nullity theorem, we can factor any v ∈ V as

v = u+w,

where u ∈ kerV , and w ∈ imV . Then we know that

q(T)(v) = q(T)(u) + q(T)(v) = 0+ 0 = 0,

because u ∈ ker T =⇒ Tu = 0, and w ∈ im T =⇒ p(T)w = 0, and
so q(T)u = q(T)w = 0. Therefore for all v ∈ V , q(T)v = 0, and thus the
minimal polynomial of T must divide q(x).

Remark: You cannot assume that the base field is algebraically closed. In
particular, the minimal polynomial of T may not factor into linear terms
in this case.
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2. (6 points) Suppose V is finite-dimensional and T ∈ L(V). Prove that T is
invertible iff I ∈ span(T , T2, · · · , Tdim(V)).

Proof.
Let n = dimV , and write the minimal polynomial for T be m(x). By the
Cayley-Hamilton theorem, we can write the characteristic polynomial of
T as

p(x) = anx
n + · · ·+ det(T),

and in particular
anT

n + · · ·+ det(T)I = 0.

First, suppose T is invertible. Then since det(T) ̸= 0, we can write

I = −
1

det(T)
(anT

n + · · ·+ a1T),

and so it follows that I ∈ span(T , T2, · · · , Tdim(V)).

To prove the other direction, suppose I ∈ span(T , T2, · · · , Tdim(V)), and
write

I = c1T + c2T
2 + · · ·+ cnT

n.

Then for any v ∈ ker T , we know that

v = Iv = c1Tv+ c2T
2v+ · · ·+ cnT

nv = 0,

and so it follows that ker T = 0, and so T is invertible.

2



18.700 HW 6 Solutions Fall 2024

3. (5 points) Suppose F = C, V is finite-dimensional and T ∈ L(V). Prove
that V has a k-dimensional T -invariant subspace for each k = 1, · · · , dim(V).

Proof.
We know that there is a basis {v1, · · · , vn} of V for which T has an upper-
triangular matrix. Then since the matrix is upper triangular, the subspace
generated by the eigenvectors {vk, · · · , vn} is T -invariant.
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4. (6 points) Suppose F = C, V is finite-dimensional and T ∈ L(V). Prove
that there exists a basis of V with respect to which T has a lower-triangular
matrix.

Proof. We know that there is a basis {v1, · · · , vn} of V for which T has
an upper-triangular matrix. Check that for the basis {vn, · · · , v1}, T has a
lower-triangular matrix.
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5. (7 points) Suppose F = C, V is finite-dimensional and T ∈ L(V).

a. Prove that if T4 = I, then T is diagonizable.

b. Prove that if T4 = T , then T is diagonizable.

c. Give an example of T ∈ L(C2) such that T4 = T2 and T is not
diagonizable.

Proof.

(a) To show that T is diagonizable, it is enough to show that the mini-
mal polynomial of T factors into linear terms with multiplicity 1. Since
T4 = I, it follows that the minimal polynomial of T has to divide

z4 − 1 = (z− 1)(z+ 1)(z− i)(z+ i).

And so it follows that the minimal polynomial of T has to factor into linear
terms with multiplicity one.

(b) Same argument as (a), check that

z4 − z = z(z− 1)(z− exp(
2πi

3
))(z− exp(

4πi

3
)).

(c) Let T =

(
0 1
0 0

)
. Check that T4 = T2 = I. Since T only has 0 as a

repeated eigenvalue, but its eigenspace is only spanned by the vector
(0, 1), T is not diagonizable.
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6. (12 points)
The Fibonacci sequence F0, F1, · · · is defined by F0 = 0, F1 = 1, and
Fn = Fn−2 + Fn−1 for n ≥ 2. Define T ∈ L(R2) by T(x,y) = (y, x+ y).

a. Show that Tn(0, 1) = (Fn, Fn+1) for each n ∈ Z≥0.

b. Find the eigenvalues of T .

c. Find a basis of R2 consisting of eigenvectors of T .

d. Show that

Fn =
1√
5
[(
1+

√
5

2
)n − (

1−
√
5

2
)n].

Proof.

(a) Proof by induction, check that

T(Fn−1, Fn) = (Fn, Fn−1 + Fn) = (Fn, Fn+1).

(b) The characteristic polynomial of T is x2 − x− 1, so the eigenvalues are

λ2 − λ− 1 = 0 ⇐⇒ λ =
1±

√
5

2
.

(c) Check that the eigenvalues for λ± = 1±
√
5

2 are given by

v± = (1,
1±

√
5

2
).

(d) For the change of basis matrix B, we can write

T = BΛB−1,

for Λ =

(
1+

√
5

2 0

0 1−
√
5

2

)
. Thus, we know that

(Fn, Fn+1) = Tn(0, 1) = (BΛB−1)n(0, 1) = BΛnB−1(0, 1).

Since we know that

Λn =

(
1+

√
5

2

n
0

0 1−
√
5

2

n

)
,

the value of Fn can now be determined by a simple calculation in matrix
multiplication.
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