
18.700 HW 8 Solutions Fall 2024

1. (7 points) Suppose T ∈ L(V) and U is a subspace of V . Prove that

U is T−invariant ⇐⇒ U⊥ is T ∗−invariant.

Proof.
For any u ∈ U, w ∈ U⊥, we have that

⟨Tu,w⟩ = ⟨u, T ∗w⟩.

By definition, U is T -invariant if for any u ∈ U, the image Tu is also in U.
We know that Tu ∈ U is equivalent to ∀w ∈ U⊥, ⟨Tu,w⟩ = 0. Likewise,
Tw ∈ U⊥ is equivalent to ∀u ∈ U, ⟨u, T ∗w⟩ = 0. Now, since

⟨Tu,w⟩ = 0 ⇐⇒ ⟨u, T ∗w⟩ = 0,

we have the chain of equivalent statements

U is T−invariant ⇐⇒ ∀u ∈ U, Tu ∈ U⇐⇒ ∀w ∈ U⊥, ∀u ∈ U, ⟨Tu,w⟩ = 0⇐⇒ ∀w ∈ U⊥, ∀u ∈ U, ⟨u, T ∗w⟩ = 0⇐⇒ ∀w ∈ U⊥, T ∗w ∈ U⊥

⇐⇒ U⊥ is T ∗−invariant.
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2. (6 points) Suppose T ∈ L(V ,W). Suppose e1, ..., en is an orthonormal basis
of V and f1, ..., fm is an orthonormal basis of W. Prove that

∥T(e1)∥2 + · · ·+ ∥T(en)∥2 = ∥T ∗(f1)∥2 + · · ·+ ∥T ∗(fm)∥2 .

Proof.
Since {fj} is an orthonormal basis of W, we have

∥T(ei)∥2 =
∑
j

⟨T(ei), fj⟩2,

and also since {ei} is an orthonormal basis of V , we have

∥T ∗(fj)∥2 =
∑
i

⟨ei, T ∗(fj)⟩2.

We sum the first equation over i, and the second equation over j and get

∥T(e1)∥2 + · · ·+ ∥T(en)∥2 =
∑
i

∑
j

⟨T(ei), fj⟩2

=
∑
j

∑
i

⟨ei, T ∗(fj)⟩2

= ∥T ∗(f1)∥2 + · · ·+ ∥T ∗(fm)∥2 .
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3. (7 points) Let F = C and suppose T ∈ L(V) is normal. Show that T is
self-adjoint if and only if all the eigenvalues of T are real.

Proof.
We learned in class that every self-adjoint operator has only real eigenval-
ues. So we only need to show the converse.

By the spectral theorem over C, we can find an orthonormal basis of V
such that the matrix A representing the operator T with respect to this
basis is diagonal. Since the diagonal entries are the eigenvalues which are
assume to be all real numbers, it follows that A = A∗, and so we conclude
that T = T ∗.
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4. (6 points) Let F = C and suppose T ∈ L(V) is a normal operator such that
T9 = T8. Prove that T is self-adjoint and T2 = T .

Proof. Since T9 − T8 = 0, we know that the minimal polynomial of T
divides x9 − x8. In particular, all the eigenvalues λ of T satisfy λ9 = λ8. In
particular, we know that λ = 0, 1 and thus all eigenvalues of T are real. By
the previous exercise, we may conclude that T is self-adjoint.

Because of the spectral theorem for C, we know that T is diagonizable.
Since the possible eigenvalues of T are 0, 1, its minimal polynomial must
divide x(x− 1), and thus T2 = T .
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5. (6 points) Let n be a positive integer and T ∈ L(F) be the operator whose
matrix with respect to the standard basis consists of all 1s. Show that T is
a positive operator.

Proof. A positive operator is a self-adjoint operator whose eigenvalues
are all non-negative. Since the matrix representing T is self-adjoint, it
follows that T is also self-adjoint. Now since the matrix representing T has
eigenvalues n, 0, it follows that T is a positive operator.
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6. (4 points) Give an example of T ∈ L(C2) such that 0 is the only eigenvalue
of T and the singular values of T are 5, 0.

Proof. Think of the matrix

A =

(
0 0
5 0

)
.

We have that

A∗A =

(
0 5
0 0

)(
0 0
5 0

)
=

(
25 0
0 0

)
,

and thus the eigenvalues of A∗A are 25, 0. The singular values of A are
the square roots of the eigenvalues of A∗A, which are 5, 0. On the other
hand, one sees that the equation determining the eigenvalues of A(

0 5
0 0

)(
x
y

)
=

(
λx
λy

)
,

is equivalent to 5y = λx, 0 = λy, which has a nonzero solution (x,y) if
and only if λ = 0, in which case (x,y) = (1, 0) is a nontrivial solution.

Thus we conclude that 0 is the only eigenvalue of A.

6


