1. (7 points) Suppose $T \in L(V)$ and U is a subspace of V. Prove that

U is T-invariant
$$\iff$$
 U ^{\perp} is T*-invariant.

Proof.

For any $u \in U$, $w \in U^{\perp}$, we have that

$$\langle \mathsf{Tu}, w \rangle = \langle \mathsf{u}, \mathsf{T}^* w \rangle.$$

By definition, U is T-invariant if for any $u \in U$, the image Tu is also in U. We know that $Tu \in U$ is equivalent to $\forall w \in U^{\perp}$, $\langle Tu, w \rangle = 0$. Likewise, $Tw \in U^{\perp}$ is equivalent to $\forall u \in U$, $\langle u, T^*w \rangle = 0$. Now, since

$$\langle Tu, w \rangle = 0 \iff \langle u, T^*w \rangle = 0,$$

we have the chain of equivalent statements

U is T-invariant
$$\iff \forall u \in U, Tu \in U$$

$$\iff \forall w \in U^{\perp}, \forall u \in U, \langle Tu, w \rangle = 0$$

$$\iff \forall w \in U^{\perp}, \forall u \in U, \langle u, T^*w \rangle = 0$$

$$\iff \forall w \in U^{\perp}, T^*w \in U^{\perp}$$

$$\iff U^{\perp} \text{ is } T^*-\text{invariant}.$$

2. (6 points) Suppose $T \in L(V, W)$. Suppose $e_1, ..., e_n$ is an orthonormal basis of V and $f_1, ..., f_m$ is an orthonormal basis of W. Prove that

$$\left\|T(e_1)\right\|^2 + \dots + \left\|T(e_n)\right\|^2 = \left\|T^*(f_1)\right\|^2 + \dots + \left\|T^*(f_m)\right\|^2.$$

Proof.

Since $\{f_i\}$ is an orthonormal basis of W, we have

$$\|T(e_i)\|^2 = \sum_j \langle T(e_i), f_j \rangle^2,$$

and also since $\{e_i\}$ is an orthonormal basis of V, we have

$$\|T^*(f_j)\|^2 = \sum_i \langle e_i, T^*(f_j) \rangle^2.$$

We sum the first equation over i, and the second equation over j and get

$$\begin{split} \|T(e_1)\|^2 + \dots + \|T(e_n)\|^2 &= \sum_{i} \sum_{j} \langle T(e_i), f_j \rangle^2 \\ &= \sum_{j} \sum_{i} \langle e_i, T^*(f_j) \rangle^2 \\ &= \|T^*(f_1)\|^2 + \dots + \|T^*(f_m)\|^2 \,. \end{split}$$

3. (7 points) Let $F = \mathbb{C}$ and suppose $T \in L(V)$ is normal. Show that T is self-adjoint if and only if all the eigenvalues of T are real.

Proof.

We learned in class that every self-adjoint operator has only real eigenvalues. So we only need to show the converse.

By the spectral theorem over \mathbb{C} , we can find an orthonormal basis of V such that the matrix A representing the operator T with respect to this basis is diagonal. Since the diagonal entries are the eigenvalues which are assume to be all real numbers, it follows that $A = A^*$, and so we conclude that $T = T^*$.

4. (6 points) Let $F=\mathbb{C}$ and suppose $T\in L(V)$ is a normal operator such that $T^9=T^8$. Prove that T is self-adjoint and $T^2=T$.

Proof. Since $T^9-T^8=0$, we know that the minimal polynomial of T divides x^9-x^8 . In particular, all the eigenvalues λ of T satisfy $\lambda^9=\lambda^8$. In particular, we know that $\lambda=0,1$ and thus all eigenvalues of T are real. By the previous exercise, we may conclude that T is self-adjoint.

Because of the spectral theorem for \mathbb{C} , we know that T is diagonizable. Since the possible eigenvalues of T are 0, 1, its minimal polynomial must divide x(x-1), and thus $\mathsf{T}^2=\mathsf{T}$.

5. (6 points) Let n be a positive integer and $T \in L(\mathbb{F})$ be the operator whose matrix with respect to the standard basis consists of all 1s. Show that T is a positive operator.

Proof. A positive operator is a self-adjoint operator whose eigenvalues are all non-negative. Since the matrix representing T is self-adjoint, it follows that T is also self-adjoint. Now since the matrix representing T has eigenvalues n, 0, it follows that T is a positive operator.

6. (4 points) Give an example of $T \in L(\mathbb{C}^2)$ such that 0 is the only eigenvalue of T and the singular values of T are 5, 0.

Proof. Think of the matrix

$$A = \begin{pmatrix} 0 & 0 \\ 5 & 0 \end{pmatrix}.$$

We have that

$$A^*A = \begin{pmatrix} 0 & 5 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 5 & 0 \end{pmatrix} = \begin{pmatrix} 25 & 0 \\ 0 & 0 \end{pmatrix},$$

and thus the eigenvalues of A^*A are 25,0. The singular values of A are the square roots of the eigenvalues of A^*A , which are 5,0. On the other hand, one sees that the equation determining the eigenvalues of A

$$\begin{pmatrix} 0 & 5 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \lambda x \\ \lambda y \end{pmatrix},$$

is equivalent to $5y = \lambda x$, $0 = \lambda y$, which has a nonzero solution (x, y) if and only if $\lambda = 0$, in which case (x, y) = (1, 0) is a nontrivial solution.

Thus we conclude that 0 is the only eigenvalue of A.